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This R manual is designed as a companion to the textbook The Analytics
Edge. It starts by giving a brief introduction to R, and then explains
how to implement the methods discussed in Chapter 21 of the book in the
software R. All of the datasets used in this manual can be found online,
and we encourage you to follow along as you learn R.

1 Getting Started in R and Data Analysis

In this section, we introduce the software R and cover the basics for
getting started. R is a software environment for data analysis, statistical
computing, and graphics. It is also a programming language, which is
natural to use and enables complete data analyses in just a few lines. The
first version of R was developed by Robert Gentleman and Ross Ihaka at
the University of Auckland in the mid-1990s.

R is free and is an open-sourced project, so it is available to everyone.
For this reason and many others, R is widely used, with over two million
users around the world. New features and packages are being developed all
the time, and there are a lot of community resources available online.

If you get stuck, want more information on a topic, or just want to
learn more about R in general, there are a lot of great resources online.
Here are a few helpful websites:

• Official Page: www.r-project.org

• Download Page: www.cran.r-project.org

• Quick-R: www.statmethods.net

• R Search Page: www.rseek.org

• R Resources: www.ats.ucla.edu/stat/r/

The best way to learn R is through trial and error, so let’s get started.

Downloading R

You can download and install R for free from the Download Page listed
above. At the top of the page, select your operating system (Linux,
Windows, or Mac) and then follow the instructions. For most Windows
users, you will select “install R for the first time” and then select the top
link for the latest version of R. For most Mac users, you will also want to
download the latest version (unless you have an older operating system).
Once you have downloaded and installed R, start the application, and then
test your installation by going through the following exercise.

When you start R, you should see a window titled “R Console.” In
this window, there is some text, and then at the bottom there should be

www.r-project.org
www.cran.r-project.org
www.statmethods.net
www.rseek.org
www.ats.ucla.edu/stat/r/
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a > symbol (greater-than symbol), followed by a blinking cursor. At the
cursor, type the following:

> sd(c(5,8,12))

and then hit the enter key. You should see [1] followed by the number
3.511885 (this is the standard deviation of the numbers 5, 8, and 12). If you
don’t get this answer, try reading through the R installation steps again, or
look at the R FAQ page (http://cran.r-project.org/doc/FAQ/R-FAQ.
html) for help. If you did get this answer, you are ready to start working
in R.

Basic Calculations

In your R Console, you will always type commands after the arrow, or
greater-than sign. You can type commands directly in the console, or you
can use a script file. We highly recommend using script files to save your
work. Using script files to save and run commands is discussed in more
detail later in this section. You can find script files with the commands
used in each section of this manual in the Online Companion for this book.

Let’s start by using R for basic calculations. Try typing 8*6 in your
R console after the > symbol, hit enter, and then type 2ˆ16 after the >
symbol, and hit enter again. You should see the following in your R console:

> 8*6

[1] 48

> 2ˆ16

[1] 65536

The first line computed the product of 8 and 6 (48), and the second line
computed 2 to the power 16 (65536). The [1] is just R’s way of labeling
the output, and you can safely ignore it.

If you type a command but do not finish it properly, R will display a
plus sign. For example, in the output below we just typed 2ˆ and hit enter.

> 2ˆ

+

The plus sign is R’s way of telling you that the command is not finished.
You can either complete the command (in this case by typing a number)
or you can hit the escape key to get back to the greater-than symbol.

R has a nice shortcut to scroll through previous commands. Just hit
the up arrow to scroll through the previous commands you ran in your
current session. You can also use the down arrow to get back to where you
started in the list of commands. If you find one that you want to re-run,
just hit enter (or you can edit the command first, and then hit enter).

http://cran.r-project.org/doc/FAQ/R-FAQ.html
http://cran.r-project.org/doc/FAQ/R-FAQ.html
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Functions and Variables

R mostly works in terms of functions and variables. A function can take
in several arguments or inputs, and returns an output variable. If you
are familiar with Excel, functions in R are very similar to functions in
Excel. Examples are the square root function (sqrt) and the absolute
value function (abs). The following output shows how these functions can
be used:

> sqrt(2)

[1] 1.414214

> abs(-65)

[1] 65

There are thousands of functions built into R, and we will add packages in
later sections to access even more functions.

You can get help on any function by typing a question mark, and then
the name of the function in your R console (for example, ?sqrt). The help
pages in R can take a little getting used to, but remember that you can
also try searching online for more information about a function if needed.

We will often want to save the output of a function so that we can
use it later. We can do this by assigning the output to a variable. The
following R code assigns the output of the sqrt function to a variable
named SquareRoot2:

> SquareRoot2 = sqrt(2)

You should notice that you don’t see the output of the sqrt function when
you assign it to a variable name. You can check that everything went okay
by viewing the value of the variable - just type the name of the variable in
your R console and hit enter:

> SquareRoot2

[1] 1.414214

We used the equals sign (=) here to assign the output of a function to a
variable name. You could instead use the notation <- for assignment. For
example, SquareRoot2 <- sqrt(2). We will use the equals sign in this
manual because we feel that it is more natural to use. However, you can
use either notation, and if you look online for R help, you will probably
encounter both options.

The name of the variable is completely up to you, but there are some
basic variable naming rules: do not use spaces in variable names, and do not
start variable names with a number. Also, keep in mind that variable names
in R are case sensitive (capital and lowercase letters are not equivalent).

If you want to see a list of all of the variables you have created in
your current R session, you can type ls() in your R console and hit enter
(this can be very useful if you forget what name you used for a variable).
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Vectors and Data Frames

So far, we have only created a variable that equals a single number. We will
also work with vectors (a series of numbers stored as the same object) and
data frames (similar to a matrix, and looks like a spreadsheet in Excel).

You can create a vector by using the c function. For example, we can
create a vector of country names:

> CountryName = c("Brazil", "China", "India", "Switzerland",

"USA")

> CountryName

[1] "Brazil" "China" "India" "Switzerland" "USA"

Our vector is called CountryName, and it contains five elements. When the
output of CountryName is displayed, you might notice that the names are
in quotes, just like they were when we created the vector. This tells us
that R recognized that this is a character vector, as opposed to a numeric
vector.

We can also create a vector that contains the life expectancy of each
country:

> LifeExpectancy = c(74, 75, 66, 83, 79)

> LifeExpectancy

[1] 74 75 66 83 79

We know that this one is a numeric vector, because the output is not in
quotes. Be careful to not mix characters and numbers in one vector, since
R will convert all of the values to characters, and you will no longer be able
to do any numeric calculations with the numbers, like compute the mean.
We will use data frames to have character vectors and numeric vectors in
the same object.

A single element of a vector can be displayed using square brackets:

> CountryName[1]

[1] "Brazil"

> LifeExpectancy[3]

[1] 66

This shows us that the first element of CountryName is “Brazil” and the
third element of LifeExpectancy is 66.

Another nice function for creating vectors is the seq function, or
the sequence function. This function takes three arguments, and creates a
sequence of numbers. The sequence starts at the first argument, ends at the
second argument, and jumps in increments defined by the third argument.
As an example, let’s create a sequence from 0 to 50, in increments of 5:

> seq(0,50,5)

[1] 0 5 10 15 20 25 30 35 40 45 50

This can be very useful if you want to create a column of identifiers. For
example, if you have 1000 data points, and you want to number them from
1 to 1000, you can use seq(1,1000,1).
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To store multiple vectors as one object, they can be combined into
a data frame. When we work with data in this manual, we will read it in
to a data frame from a CSV (Comma Separated Values) file, so we will be
working with data frames extensively. You can think of a data frame as a
bunch of vectors stored as the same object.

Let’s create our first data frame by using the data.frame function
to combine CountryName and LifeExpectancy into a data frame called
CountryData:

> CountryData = data.frame(CountryName, LifeExpectancy)

> CountryData

CountryName LifeExpectancy

1 Brazil 74

2 China 75

3 India 66

4 Switzerland 83

5 USA 79

The data frame CountryData contains two columns (CountryName and
LifeExpectancy) and five rows, or observations (one for each country).
We can learn more about the structure of our data frame by using the str

function:

> str(CountryData)

‘data.frame’: 5 obs. of 2 variables:
$ CountryName :Factor w/ 5 levels "Brazil","China",.:1 2 3 4 5

$ LifeExpectancy :num 74 75 66 83 79

The first row tells us that CountryData is a data frame with 5 observations
(or rows) and 2 variables (or columns). Then each variable is listed after a
dollar sign. The dollar sign is used to denote a vector in a data frame, and
we will see how we can use it to access a particular vector of a data frame
shortly.

After each variable name, the type of the variable is listed (in this case
factor or numeric) and then a sample of the values. A factor variable can be
a little tricky, but you can think of it as a categorical variable, or a variable
with several different categories. Any character vector will by default be
stored in a data frame as a factor variable. The “levels” of a factor variable
are the number of different possible values in the variable. In the case of
CountryName, there are five levels because there are five countries. The
numbers at the end of the CountryName row are just assigning a numerical
value to each factor level for R to use internally – we generally do not need
to worry about knowing these numbers.

If we want to add another vector to our data frame (let’s say we want
to add the population of each country, in thousands), we can do this easily
by using the “dollar sign notation.” We just need to type the name of the
data frame, a dollar sign, then the name of the new variable we want to
create, followed by the values:
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> CountryData$Population = c(199000, 1390000, 1240000, 7997,

318000)

> str(CountryData)

‘data.frame’: 5 obs. of 3 variables:
$ CountryName :Factor w/ 5 levels "Brazil","China",.:1 2 3 4 5

$ LifeExpectancy :num 74 75 66 83 79

$ Population :num 199000 1390000 1240000 7997 318000

If you instead want to add a new observation (a new row, or new country
in this case) you can use the rbind function. We will not go into detail
here, but you can learn more by typing ?rbind in your R console.

Loading CSV Files

Most of the time, you will not create your data set from scratch in R.
You will instead read the data in from a file. In this manual, we will
mostly use CSV files, but you can read in any type of delimited file. (For
more information, see ?read.table.) A CSV file can easily be opened and
modified in Excel, or in another spreadsheet software.

The first thing you need to do to read in a CSV file is to navigate
to the directory on your computer where the CSV file is stored. You can
do this on a Mac by going to the “Misc” menu in R, and then selecting
“Change Working Directory.” Then you should navigate to the folder on
your computer containing the data file you want to load into R, and click
“Open.” On a Windows machine, you should go to the “File” menu, select
“Change dir . . . ”, and then navigate to the directory on your computer
containing the file you want to load. (You can also use the setwd function
to set your working directory in R. For more information, see ?setwd.)

After navigating to the correct directory in R, nothing should have
happened in your R console, but if you type getwd(), you should see the
folder you selected at the end of the output (this is called the path to the
file).

Let’s read in the CSV file “WHO.csv.” You can find this file in the
Online Companion for this book. Download the file, and save it to a location
that you will remember. Then navigate to the location of the file using the
instructions above. Once you are in the folder containing “WHO.csv”, you
can read in the data and look at its structure by using the read.csv and
str functions:
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> WHO = read.csv("WHO.csv")

> str(WHO)

‘data.frame’: 194 obs. of 10 variables:
$ Country :Factor w/ 194 levels "Afghanistan",..:1 2

3 4 5 6 7 8 9 10 ...

$ Region :Factor w/ 6 levels "Africa", "Americas",

..: 3 4 1 4 1 2 ...

$ Population :int 29825 3162 38482 78 20821 89 41087

2969 23050 8464 ...

$ Under15 :num 47.4 21.3 27.4 15.2 47.6 ...

$ Over60 :num 3.82 14.93 7.17 22.86 3.84 ...

$ FertilityRate :num 5.4 1.75 2.83 NA 6.1 2.12 2.2 1.74

1.89 1.44 ...

$ LifeExpectancy :int 60 74 73 82 51 75 76 71 82 81 ...

$ CellularSubscribers :num 54.3 96.4 99 75.5 48.4 ...

$ LiteracyRate :num NA NA NA NA 70.1 99 97.8 99.6 NA

NA ...

$ GNI :num 1140 8820 8310 NA 5230 ...

This dataset contains recent statistics about 194 countries from the World
Health Organization (WHO). The variables are: the name of the country
(Country), the region the country is in (Region), the population of the
country in thousands (Population), the percentage of the population under
15 years of age (Under15), the percentage of the population over 60 years of
age (Over60), the average number of children per woman (FertilityRate),
the life expectancy in years (LifeExpectancy), the number of cellular
subscribers per 100 population (CellularSubscribers), the literacy rate
among adults at least 15 years of age (LiteracyRate), and the gross
national income per capita (GNI).

Another useful function for summarizing a data frame is the summary

function. If you type summary(WHO) in your R console, you should
see a statistical summary of each of the variables. For factor variables
like Country and Region, the output counts the number of observations
belonging to each of the possible values. For numeric variables, the output
shows the minimum, first quartile (the value for which 25% of the data is
less than the value), median, mean, third quartile (the value for which 75%
of the data is less than the value), maximum, and number of missing values
(NAs) of the variable.

Subsetting Data

It is often useful to create a subset of a data frame to be used in analysis
or for building models. This can be done with the subset function. For
example, suppose we wanted to subset our data frame WHO to only contain
the countries in the Europe region. We can do this with the following
command:

> WHOEurope = subset(WHO, Region == "Europe")
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This creates a new data frame called WHOEurope, which contains the
observations from the data frame WHO for which the Region variable has
value “Europe.” Note that a double equals sign (==) is used here to test
for equality, versus the single equals sign, which is used for assignment. If
you take a look at the structure of WHOEurope using the str function, you
should see that it has the same 10 variables that the original data frame
WHO has, but only 53 observations, corresponding to the 53 countries in the
Europe region.

Basic Data Analysis

Once we have loaded our data set into R, we can quickly compute some basic
statistical properties of the data. The following commands compute the
mean, standard deviation, and statistical summary of the variable Under15:

> mean(WHO$Under15)

[1] 28.73242

> sd(WHO$Under15)

[1] 10.53457

> summary(WHO$Under15)

Min. 1st Qu. Median Mean 3rd Qu. Max.

13.12 18.72 28.65 28.73 37.75 49.99

Note that we reference a variable in a data frame by using the dollar sign.
If we just typed mean(Under15) we would get an error message. R will only
recognize a variable name in a data frame if you link it to the proper data
frame with the dollar sign. We will see an exception to this later when we
start building models, but in general, you will need to type the data frame
name, then a dollar sign, and then the name of the variable (for example,
WHO$Under15).

The which.min and which.max functions are also very useful. Let’s
look at an example:

> which.min(WHO$Under15)

[1] 86

> WHO$Country[86]

[1] Japan

The which.min function returned the index of the observation with the
minimum value of the variable Under15. By looking at the country name
for the 86th observation, we can see that the country is Japan. So in our
dataset, Japan has the lowest percentage of the population under 15 years
of age. The which.max function works similarly:

> which.max(WHO$Under15)

[1] 124

> WHO$Country[124]

[1] Niger
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This tells us that Niger is the country with the largest percentage of its
population under the age of 15.

Plots

We can easily generate basic plots in R. Later in this manual, we will see
how we can generate more sophisticated and visually appealing plots using
ggplot2, a great visualization package.

Let’s start with a basic scatterplot of GNI versus FertilityRate:

> plot(WHO$GNI, WHO$FertilityRate)

The plot function generates a scatterplot. The first argument will go along
the x-axis, and the second argument will go along the y-axis. If you run this
command in your R Console, you should see a plot like the one in Figure
1.

Figure 1: Scatterplot generated with the R command

plot(WHO$GNI, WHO$FertilityRate).
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By looking at this plot, we can see that there are a few abnormal
points with an unusually high income given how high the fertility rate is.
Let’s investigate these points. First, we will use the subset function:

> Outliers = subset(WHO, GNI > 10000 & FertilityRate > 2.5)
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This takes the observations from WHO that have both a GNI greater than
10000 and a FertilityRate greater than 2.5, and stores them in a new
data frame called Outliers. The & symbol indicates that we want the first
condition to be true, and we want the second condition to be true (if instead
we wanted the first condition to be true or the second condition to be true,
we could have used the | symbol). After running this command, if you
type nrow(Outliers) in your R console, you should get the output 7. The
nrow function counts the number of rows in the data frame. So there are
seven countries in our data set that have a GNI greater than 10000 and a
fertility rate greater than 2.5. If you want to see which countries these are,
you can take a look at the country names, by typing Outliers$Country in
your R console.

Other simple plots to make in R include a histogram and a box
plot. The following commands generate a histogram of the variable
CellularSubscribers, and a box plot of the variable LifeExpectancy

(with the observations sorted by the variable Region):

> hist(WHO$CellularSubscribers)

> boxplot(WHO$LifeExpectancy ∼ WHO$Region)

The histogram is shown in Figure 2. The value of CellularSubscribers is
shown along the x-axis, and the frequency, or count, is shown on the y-axis.
The bars denote the frequency of the different “buckets” of possible values.
The bucket sizes can be changed by adding an additional parameter (for
more information, see ?hist). A histogram is useful for understanding the
distribution of a variable. This histogram shows us that the most frequent
value of CellularSubscribers is around 100.

The box plot is shown in Figure 3. A box plot is useful for
understanding the statistical range of a variable. This box plot shows how
the life expectancy in countries varies according to the region they are in
(the regions are listed along the x-axis, and the values for LifeExpectancy
are listed along the y-axis). The box for each region shows the range of
values between the first and third quartiles, with the middle line marking
the median value. The dashed lines, or “whiskers,” show the range of values,
excluding any outliers, which are plotted as circles. Outliers are defined by
first computing the difference between the first and third quartiles, or the
height of the box. This number is called the inter-quartile range (IQR).
Any point that is greater than the third quartile plus the IQR, or any point
that is less than the first quartile minus the IQR is considered an outlier.

To add a nice title and axis labels to the plot, we can add a
few additional arguments. For example, let’s add the y-axis label “Life
Expectancy,” and the title “Life Expectancy of Countries by Region” to
the box plot:

> boxplot(WHO$LifeExpectancy ∼ WHO$Region, ylab = "Life

Expectancy", main = "Life Expectancy of Countries by Region")
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Figure 2: Histogram generated with the R command

hist(WHO$CellularSubscribers).
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Figure 3: Box plot generated with the R command

boxplot(WHO$LifeExpectancy ∼ WHO$Region).
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We could add similar arguments to the plot command or to the hist

command. For more information about the different plotting functions and
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the different options available, type ?plot, ?hist, or ?boxplot in your R
console.

Summary Tables

The table and tapply functions are very useful in R for generating
summary tables, which can be helpful for understanding trends in the
data. The table function is particularly helpful for understanding factor
variables, or numeric variables that take a small number of values. Let’s
start by creating a table of the variable Region:

> table(WHO$Region)

Africa Americas Eastern Mediterranean Europe

46 35 22 53

South-East Asia Western Pacific

11 27

The table function counts the number of observations that take each of the
possible values of the variable. So this output shows us that there are 46
countries in the region Africa, 35 countries in the region Americas, and so
on.

We can also use logical statements to count observations. For
example, let’s see how many countries have a life expectancy greater than
75:

> table(WHO$LifeExpectancy > 75)

FALSE TRUE

134 60

This output tells us that there are 134 countries for which the statement is
false, or 134 countries for which the life expectancy is less than or equal to
75. There are 60 countries for which the statement is true, meaning that
there are 60 countries for which the life expectancy is greater than 75.

We can create a two-dimensional table if we want to compare the
values of two variables. For example, let’s see how the life expectancy
varies according to the region the country is in:

> table(WHO$Region, WHO$LifeExpectancy > 75)

FALSE TRUE

Africa 46 0

Americas 23 12

Eastern Mediterranean 16 6

Europe 20 33

South-East Asia 10 1

Western Pacific 19 8

The possible values of the first variable we put in the table command are
listed on the left, and the possible values of the second variable (in this
case a logical statement) that we put in the table command are listed on
the top. Each number counts the number of observations (or countries in



14

this case) that belong to the region labeling the row, and have either a life
expectancy less than or equal to 75 (the FALSE column) or a life expectancy
greater than 75 (the TRUE column).

This table provides us with some interesting information that we
have not learned yet. The life expectancy in countries varies significantly
depending on which region they are in. Note that we have not created any
predictive models yet, but we are still able to learn some valuable insights
about our data by just using descriptive analytics.

Another useful function for creating summary tables is the tapply

function (if you are familiar with Excel, the tapply function is like a pivot
table). It can be a little tricky to understand, but let’s go ahead and just
try out the function:

> tapply(WHO$Over60, WHO$Region, mean)

Africa Americas Eastern Mediterranean

5.220652 10.943714 5.620000

Europe South-East Asia Western Pacific

19.774906 8.769091 10.162963

The tapply function takes three arguments. The first argument is the
variable that we want to compute something about, the second argument
is the variable we want to sort our observations by, and the third argument
is what we want to compute. In this case, we want to compute the mean
of WHO$Over60, with the observations sorted by WHO$Region. The output
tells us that in Africa, the mean percentage of the population over 60 is
5.22%, while in Europe, the mean percentage of the population over 60 is
19.77%.

Let’s try another example. This time, we want to compute the
minimum value of LiteracyRate, again sorted by Region:

> tapply(WHO$LiteracyRate, WHO$Region, min)

Africa Americas Eastern Mediterranean Europe

NA NA NA NA

South-East Asia Western Pacific

NA NA

Unfortunately, it didn’t work this time because the variable LiteracyRate

has missing values. To tell the tapply function to do the computation
ignoring missing values, we just need to add an extra argument, which will
compute the minimum value by ignoring all of the countries with a missing
value for the LiteracyRate variable:

> tapply(WHO$LiteracyRate, WHO$Region, min, na.rm=TRUE)

Africa Americas Eastern Mediterranean Europe

31.1 75.2 63.9 95.2

South-East Asia Western Pacific

56.8 60.6
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This tells us that the smallest literacy rate of any country in the Americas
(for which we have data) is 75.2, while the smallest literacy rate of any
country in South-East Asia (for which we have data) is 56.8.

Saving Your Work with Scripts

While working in R, you often want to save your work so that you can
easily re-run commands and re-build models. There are several ways of
doing this, but the method we recommend is using a script file.

You can open a new script file on a Mac by going to the “File” menu,
and selecting “New Document,” and on a Windows machine by again going
to the “File” menu, and selecting “New script.” You should edit the script
file just like any text file. When you include commands in the script file,
do not include the > symbol or any of the output. To include a comment,
just start the line with a pound symbol (#).

If you re-open your script file in R, it is easy to re-run lines of code.
Just highlight the line, and then hit the keys Command-Enter on a Mac,
or Control-r on a Windows machine.

When you quit R, it will ask you if you want to save your workspace.
If you have everything you want in a script file, then you do not need to
worry about saving your workspace. Additionally, script files can easily
be shared with others, or used on multiple computers. You can find a
script file containing all of the commands used in this section in the Online
Companion.

2 Linear Regression in R

In this section, we will see how to create linear regression models in R. Our
example will be Ashenfelter’s linear regression model, which was described
in Chapter 1 of The Analytics Edge. The dataset “Wine.csv” is provided in
the Online Companion. Let’s go ahead and read the data into R, and then
take a look at it using the str function. Do not forget to navigate to the
directory on your computer containing the file “Wine.csv” before running
these commands (see Section 1 for more information on how to do this).

> Wine = read.csv("Wine.csv")

> str(Wine)

‘data.frame’: 25 obs. of 7 variables:
$ Year :int 1952 1953 1955 1957 1958 1959 1960 1961 1962...

$ Price :num 7.5 8.04 7.69 6.98 6.78 ...

$ WinterRain :int 600 690 502 420 582 485 763 830 697 608 ...

$ AGST :num 17.1 16.7 17.1 16.1 16.4 ...

$ HarvestRain :int 160 80 130 110 187 187 290 38 52 155 ...

$ Age :int 31 30 28 26 25 24 23 22 21 20 ...

$ FrancePop :num 43184 43495 44218 45152 45654 ...
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This dataset has seven variables, which are described in Table 1. We will
build a linear regression model to predict Price, using WinterRain, AGST,
HarvestRain, Age, and FrancePop as independent variables.

Table 1: Explanation of the Variables in the Wine dataset.

Variable Description

Year The year the wine was produced.

Price A measurement of wine quality computed by
Ashenfelter.

WinterRain The amount of winter rain the year the wine was
produced, measured in millimeters.

AGST The average growing season temperature the year
the wine was produced, measured in degrees
Celsius.

HarvestRain The amount of rain during harvest season
(August and September) the year the wine was
produced, measured in millimeters.

Age The age of the wine, relative to 1983.

FrancePop The population of France the year the wine was
produced.

We can do this in R using the lm function, which stands for linear
model:

> WineReg = lm(Price ∼ WinterRain + AGST + HarvestRain + Age +

FrancePop, data=Wine)

The lm function gives as output a linear regression model, which we saved
to the variable named WineReg. The first argument of the lm function is
the formula for the model we want to build. The formula starts with the
dependent variable, or the variable we want to predict, then is followed by
a tilde symbol (∼), and then each of the independent variables, separated
by plus signs. The second argument of the function is the data set we want
to use to build our model. Note that here we do not need to use the dollar
sign notation to refer to our variables, because we have the data argument
telling R which data set to use. (In fact, you should be careful to not use
the dollar sign notation when building models, because it will prevent this
model from being used on any other dataset.)

To look at the output of the model, we can use the summary command:
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> summary(WineReg)

Call:

lm(formula = Price ∼ WinterRain + AGST + HarvestRain + Age +

FrancePop, data = Wine)

Residuals:
Min 1Q Median 3Q Max

-0.48179 -0.24662 -0.00726 0.2212 0.51987

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.4504 10.19 -0.044 0.965202

WinterRain 0.001043 0.0005310 1.963 0.064416 .

AGST 0.6012 0.1030 5.836 1.27e-05 ***

HarvestRain -0.003958 0.0008751 -4.523 0.000233 ***

Age 0.0005847 0.07900 0.007 0.994172

FrancePop -4.953e-05 1.667e-04 -0.297 0.769578
---

Signif.codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3019 on 19 degrees of freedom

Multiple R-squared: 0.8294, Adjusted R-squared: 0.7845

F-statistic: 18.47 on 5 and 19 DF, p-value: 1.044e-06

The output starts by describing the “Call”, or the function that was used
to generate this output. Below the Call is a description of the residuals,
giving the minimum, first quartile, median, third quartile, and maximum
values of the residuals.

Below the residual section is a table describing the coefficients.
The first column of this table gives a name to each coefficient - either
“Intercept”, or one of the independent variable names. The “Estimate”
column gives the coefficients for the intercept and for each of the independent
values, or the b0, b1, b2, . . . bk values. The other three columns (“Std.
Error”, “t value”, and “Pr(> |t|)”) help us determine if a variable should
be included in the model, or if its coefficient is significantly different from
zero, according to this dataset. For more information about the meaning
of these columns, see the linear regression section of Chapter 21 of The
Analytics Edge.

These columns give a lot of information, but R actually makes it
easy for us to quickly see which variables are significant. At the end of
each row of this table, there is either nothing, a period, or one to three
stars (or asterisks). In this particular output, we can see a period after
the WinterRain row, and three stars after both the AGST row and the
HarvestRain row. Three stars denote the most significant variables, and
are variables that are really critical to our model. Two stars are slightly
less significant (but still important), and one star is significant, but even
less so. A period means that the variable is “borderline” significant, and
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nothing means that the variable is not significant at all.
At the bottom of the output are some statistics describing the

regression equation, such as the “Multiple R-squared” value. For more
information about regression in R and the lm function, use R help by typing
?lm into your R console.

Refining the Model

If you have determined that you should remove one or more insignificant
independent variables, it is easy to adjust the model in R. Keep in mind that
due to potential multicollinearity issues, you should remove independent
variables one at a time.

In our WineReg model, we have two variables that are not significant:
Age and FrancePop. Let’s try removing FrancePop first, since it is the
variable that makes the least intuitive sense in the model. We can do this
by re-running the model, and just leaving out FrancePop in the independent
variable sum:

> WineReg = lm(Price ∼ WinterRain + AGST + HarvestRain + Age,

data=Wine)

We can look at the summary output again to see how this changed the
model:

> summary(WineReg)

Call:

lm(formula = Price ∼ WinterRain + AGST + HarvestRain + Age, data =

Wine)

Residuals:
Min 1Q Median 3Q Max

-0.45470 -0.24273 -0.00752 0.19773 0.53637

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.4299802 1.7658975 -1.942 0.066311 .

WinterRain 0.0010755 0.0005073 2.120 0.046694 *

AGST 0.6072093 0.0987022 6.152 5.2e-06 ***

HarvestRain -0.0039715 0.0008538 -4.652 0.000154 ***

Age 0.0239308 0.0080969 2.956 0.007819 **
---

Signif.codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.295 on 20 degrees of freedom

Multiple R-squared: 0.8286, Adjusted R-squared: 0.7943

F-statistic: 24.17 on 4 and 20 DF, p-value: 2.036e-07

Now, all of our independent variables are significant! This is a clear sign
that our model was suffering from multicollinearity. The variables Age and
FrancePop are highly correlated, with a correlation of -0.99. (You can
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check the correlation of two variables in R by using the cor function: type
cor(Wine$Age, Wine$FrancePop) in your R console.) Also note that by
removing an independent variable, all of our coefficient estimates adjusted
slightly.

It is also important to note that our Multiple R-squared only slightly
decreased. This is another clear sign that removing FrancePop created a
better model than the one we had before. If we had removed Age and
FrancePop at the same time (remember that they were both insignificant
in our original model), our Multiple R-squared would have decreased to
0.7537. This is a significant loss in terms of R2, which we were able to
avoid by removing just one variable at a time.

Making Predictions

You can use your linear regression model to make predictions on new
observations by using the predict function. We will make predictions for
the dataset “WineTest.csv,” which you can find in the Online Companion.
Go ahead and read this data file into R using the read.csv function,
and call it WineTest. Then you can make predictions using the following
command:

> WinePredictions = predict(WineReg, newdata=WineTest)

If you take a look at WinePredictions, you can see that our
prediction for the first data point is 6.768925, and our prediction for the
second data point is 6.684910. How does this compare to the actual values?
Let’s compute our test set R2. We can do this in R with just a few
calculations:

> SSE = sum((WineTest$Price - WinePredictions)^2)

> SST = sum((WineTest$Price - mean(Wine$Price))^2)

> 1 - SSE/SST

[1] 0.7944278

The first line computes the sum of squared errors for our predictions
on the test set, and the second line computes the total sum of squares on
the test set. Note that we use the mean of Price in the training set to
calculate SST. Our test set R2 is 0.79.

3 Logistic Regression in R

To show how to build a logistic regression model in R, we will use a subset
of the data from Chapter 1 in The Analytics Edge on predicting the quality
of health care. The dataset is called “Quality.csv,” and can be found in the
Online Companion. Our goal will be to predict whether or not a patient
was classified as receiving poor quality care, based on some information
that could be extracted from the patient’s medical claims history.
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Before building a logistic regression model, let’s take a look at our
data. Read the dataset “Quality.csv” into R and take a look at the structure
of the data frame. This dataset has 131 observations and 8 different
variables. The variables are described in Table 2. The first variable is just
a unique identifier, the next six variables will be the independent variables
in our model, and the last variable is the outcome, or dependent variable
of our model.

Table 2: Explanation of the Variables in the Quality dataset.

Variable Description

MemberID A unique identifier for each observation.

ERVisits The number of times the patient visited
the emergency room.

OfficeVisits The number of times the patient visited
any doctor’s office.

Narcotics The number of prescriptions the patient
had for narcotics.

ProviderCount The number of providers that saw or
treated the patient.

NumberClaims The total number of medical claims the
patient had.

StartedOnCombination Whether or not the patient was started
on a combination of drugs to treat their
diabetes.

PoorCare Whether or not the patient received poor
care (1 if the patient had poor care, 0
otherwise).

Before building a predictive model, we want to split our dataset into
a training dataset, which we will use to build the model, and a testing
dataset, which we will use to test the model’s out-of-sample accuracy. In
the previous section on linear regression, the data was already split into two
pieces for us, according to the year of the observations. This time, we just
have one dataset, and there is no chronological order to the observations.
The standard way to split the data in this situation is to randomly assign
observations to the training set or testing set.

Creating Training and Testing Sets

The following approach can be used to split a dataset into a training and
testing set for any classification problem.
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The first step is to install and load a new package in R, called caTools.
In your R console, first enter the command install.packages("caTools").
You will probably be asked to select a CRAN Mirror. When this
window comes up, just pick a location near you. After the package has
finished installing, it can be loaded into your current R session by typing
library(caTools). When you want to use this package in the future, you
will not need to re-install it, but you will need to load it with the library

function.

Now that the caTools package is installed and loaded, we are ready
to split our data. We will do this using the sample.split function, which
takes two arguments: the dependent variable, and the fraction of the data
that you want in your training set. Since this function is randomly splitting
our data, we can set the random seed first with the set.seed function to
make sure that we can replicate our results later. We will set the seed to
the number 88 here, but this could be any number you want. Keep in mind
that if you pick a different number than we do here, or if you do not set
the seed, you might get slightly different results than those reported in this
section, due to the random assignment of observations to the training set
or testing set.

> set.seed(88)

> spl = sample.split(Quality$PoorCare, SplitRatio = 0.75)

The sample.split function produces a TRUE/FALSE vector that
will help us randomly split the data into two pieces according to the selected
SplitRatio value. Here, we selected a SplitRatio of 0.75, which means
that we want to put 75% of our data in the training set, and 25% of our
data in the testing set. So spl should have 99 TRUE values (or 75% of the
original 131 observations) and 32 FALSE values (or 25% of the original 131
observations). You can check using the table function.

Additionally, sample.split splits the data strategically, to make sure
that the dependent variable is balanced in the two resulting datasets. If 90%
of the observations have one outcome, and 10% have the other outcome,
this ratio will be maintained in both resulting datasets. This is especially
important for very unbalanced datasets, to make sure that your training
set and your testing set are representative of the entire dataset.

Now we are ready to actually split our data into two pieces, according
to the values of spl. If spl is equal to TRUE, we will put the corresponding
observation in the training set, and if spl is equal to FALSE, we will put
the corresponding observation in the testing set:

> QualityTrain = subset(Quality, spl==TRUE)

> QualityTest = subset(Quality, spl==FALSE)

If you take a look at the structure of QualityTrain and QualityTest, you
should see that they have the same eight variables as Quality, but they
have 99 and 32 observations, respectively.
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Building a Logistic Regression Model

The process of creating a logistic regression model in R is very similar to
creating a linear regression model in R, but this time we will use the glm

function, which stands for generalized linear model:

> QualityModel = glm(PoorCare ∼ ERVisits + OfficeVisits + Narcotics

+ ProviderCount + NumberClaims + StartedOnCombination, data =

QualityTrain, family=binomial)

The first argument to the glm function lists the dependent variable, followed
by a list of the independent variables, separated by plus signs. This is the
same format that we used for the lm function. Then we specify the data
set we want to use to build our model (QualityTrain), and lastly we have
to add the argument family=binomial. The glm function can be used
for many different types of models, and the family=binomial argument
indicates that we want to build a logistic regression model. We can look at
our model using the summary function:

> summary(QualityModel)

Call:

glm(formula = PoorCare ∼ ERVisits + OfficeVisits + Narcotics +

ProviderCount + NumberClaims + StartedOnCombination,

family=binomial, data = QualityTrain)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.90550 -0.60126 -0.49550 -0.03788 2.21568

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.887727 0.737894 -3.913 0.000091 ***

ERVisits 0.017754 0.131474 0.135 0.8926

OfficeVisits 0.079668 0.038430 2.073 0.0382 *

Narcotics 0.076416 0.033741 2.265 0.0235 *

ProviderCount 0.016655 0.027430 0.607 0.5437

NumberClaims -0.005524 0.014204 -0.389 0.6974

StartedCombination 1.919179 1.368662 1.402 0.1608
---

Signif.codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 111.888 on 98 degrees of freedom

Residual deviance: 86.214 on 92 degrees of freedom

AIC: 100.21

Number of Fisher Scoring iterations: 5

This output looks similar to the linear regression model output. The
coefficient estimate gives the β values of the model, and the remaining
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columns of the coefficients table allow you assess the significance of an
independent variable. We will not go into details about what the different
columns mean here, but the probabilities and stars at the end of each
row can be used to measure significance in the same way as for a linear
regression model. The AIC, or Akaike Information Criterion, is a measure
of the quality of the model and can be found near the bottom of the output.

Evaluating the Model

To evaluate the logistic regression model, let’s start by computing the
accuracy of the model on the training set with a threshold of 0.5:

> PredictTrain = predict(QualityModel, type="response")

> table(QualityTrain$PoorCare, PredictTrain > 0.5)

FALSE TRUE

0 71 3

1 14 11

The first line creates a vector of predictions for the training set, and the
second line creates what is called a classification matrix or confusion matrix
for a threshold of 0.5. The actual classes are listed on the left of the table,
and the predictions are listed along the top. We selected a threshold of 0.5,
so the prediction is FALSE if the probability is less than 0.5, and TRUE
if the probability is greater than 0.5. The table tells us that we classify
81 observations correctly (71 of class 0, and 10 of class 1), for an overall
accuracy rate of 81/99, or 81.8%. The table also tells us about the types
of errors we make. We end up making three false positive errors, in which
we predict that the patient is receiving poor care but they are actually
receiving good care, and 15 false negative errors, in which we predict that
the patient is receiving good care but they are actually receiving poor care.
You can change the value of 0.5 in the table command to see what the
classification matrix looks like with different threshold values.

Now, let’s generate an ROC curve, and compute the AUC of the
model. You will first need to install and load the ROCR package if you have
not already, by using the install.packages and library functions. Then
we can use the following commands to generate an ROC curve:

> ROCRpred = prediction(PredictTrain, QualityTrain$PoorCare)

> ROCCurve = performance(ROCRpred, "tpr", "fpr")

> plot(ROCCurve)

The first line generates predictions that the ROCR package can understand.
The second line generates the information needed to create the ROC curve,
where "tpr" stands for “true positive rate,” and "fpr" stands for “false
positive rate.” The third line plots the ROC curve.

Unfortunately, it is a little hard to pick a threshold value using this
ROC curve, because we don’t know where a specific threshold is on the
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curve. This can easily be fixed by adding threshold labels and a color
legend to the plot with the following command:

> plot(ROCCurve, colorize=TRUE, print.cutoffs.at=seq(0,1,0.1),

text.adj=c(-0.2,0.7))

Now, let’s compute the AUC of our model on the training set. We
can output the AUC value using the following command:

> as.numeric(performance(ROCRpred, "auc")@y.values)

[1] 0.7945946

Lastly, let’s make predictions for our test set. We just need to use
the predict function again, but this time, we will pass in the argument
newdata:

> PredictTest = predict(QualityModel, type="response",

newdata=QualityTest)

> table(QualityTest$PoorCare, PredictTest > 0.5)

FALSE TRUE

0 23 1

1 3 5

We can see from this classification matrix that the overall accuracy of our
model on the test set is 28/32, or 87.5%, and we make three false positive
predictions, and one true positive prediction. You can also generate the
ROC curve and compute the AUC for the test set using the commands
given above, but for the predictions PredictTest. More about how this
model can be used and the interpretation of the model can be found in
Chapter 1.

4 Trees in R

To show how to build a CART model and a random forest model in R with
a categorical outcome, we will use data from Chapter 1 in The Analytics
Edge on predicting decisions made by the Supreme Court. Specifically, we
will build a model to predict the decisions of Justice Stevens, one of the
Supreme Court Justices in 2002. The dataset is called “Stevens.csv,” and
can be found in the Online Companion. Our goal will be to predict whether
or not Justice Stevens will reverse a case, using some basic properties of
the case.

If you read this dataset into R and take a look at the structure of
the data frame, you should see that there are 566 observations (Supreme
Court cases) and 9 different variables. The variables are described in Table
3. The first variable is just a unique identifier, the second variable is the
year of the case, the next six variables will be the independent variables in
our model, and the last variable is the outcome, or dependent variable of
our model.
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Table 3: Variables in the dataset “Stevens.csv”

Variable Description

Docket A unique identifier for each case.

Term The year of the case.

Circuit The circuit court of origin of the case. One of
1st − 11th, Federal, or D.C.

Issue The issue area of the case. Examples are criminal
procedure, civil rights, privacy, etc.

Petitioner The type of petitioner in the case. Examples are
an employer, an employee, the United States, etc.

Respondent The type of respondent in the case. Examples are
an employer, an employee, the United States, etc.

LowerCourt The ideological direction of the lower court
ruling, either liberal or conservative.

Unconst Whether or not the petitioner argued that a law
or practice is unconstitutional.

Reverse Whether or not Justice Stevens voted to reverse
the case.

Later in this section, to show how to build a CART model and a
random forest model with a continuous outcome, we will use the data on
wine that was used in Section 2. The file “Wine.csv” can be found in the
Online Companion. The variables are described in Table 1.

Before we can build a CART or a random forest model, we need to
install and load three new packages: rpart, for building CART models,
rpart.plot, for plotting CART models, and randomForest for building
random forest models. Go ahead and install and load these packages using
the following commands:

> install.packages("rpart")

> library(rpart)

> install.packages("rpart.plot")

> library(rpart.plot)

> install.packages("randomForest")

> library(randomForest)

Remember to pick a location near you when the CRAN Mirror window
appears. When you want to use these packages in the future, you will not
need to re-install them, but you will need to load them with the library

function.
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Categorical Outcomes

Let’s start by building models to predict a categorical outcome. Load the
dataset “Stevens.csv” into R and call the resulting data frame Stevens.
Then split the dataset into a training set, called StevensTrain, and a
testing set, called StevensTest, using the method covered in the “Creating
Training and Tests Sets” part of Section 3. Put 70% of the data in the
training set, and use the outcome variable Stevens$Reverse as the first
argument to the sample.split function. (To replicate the models built in
this section, set the random seed to 100 using the set.seed function before
creating the split.)

CART

To build a CART model using the data set StevensTrain, we can use the
rpart function:

> StevensTree = rpart(Reverse ∼ Circuit + Issue + Petitioner

+ Respondent + LowerCourt + Unconst, method="class", data =

StevensTrain, minbucket=25)

The first argument should look similar to the first argument for the
lm or glm function. It gives the “formula” of the model, starting with
the dependent variable, followed by a tilde symbol (∼), and then a list
of independent variables separated by plus signs. The next argument,
method="class", is necessary to indicate that we have a classification
problem, or one for which the dependent variable is a categorical variable.
The third argument specifies the data set that should be used to build the
model. The last argument is how we will prevent our tree from over fitting,
and specifies the minimum number of observations that should be in each
bucket of the final tree. Here we set the minbucket value to 25, but we will
see later in this section how we can use a validation set to pick a better
parameter choice.

The first thing we should do after building a CART model is plot the
tree. This can be done with the prp function:

> prp(StevensTree)

The output is shown in Figure 4.
The first split of the tree is whether or not the lower court decision is

liberal. If it is, then we move to the left in the tree, and check the circuit
court of origin. If it is the 10th, 1st, 3rd, 4th, 7th, 8th, or DC circuit
court, predict affirm. If the circuit court is not one of these, we move
on to the next split, which checks the respondent. If the respondent is a
criminal defendant, an employee, an injured person, a politician, or the US,
we predict 0, or affirm. Otherwise, we predict reverse.

We can repeat the same process to read the splits on the other side
of the tree. If at any point you need to see what the codes for the variable
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Figure 4: The CART model to predict the decision of Justice

Stevens, using a minbucket value of 25.

LowerCou = lbr

Circuit = 10t,1st,3rd,4th,7th,8th,DC

Responde = CRI,EMPLOYEE,INJ,POL,US

Responde = BUS,CIT,EMPLOYEE,GOV,OTH,US

Circuit = 10t,3rd,8th,FED0

0 1 0 1

1
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values represent, just table that variable in your console. For example, if
you have no idea what the Respondent codes are, type in your console
table(Stevens$Respondent). The prp function will shorten the names
of variable values so that the text fits on the tree, but by looking at a
table of all of the possible values, you can map the abbreviations to the full
descriptions.

There are a few important things to note regarding trees constructed
with the prp function:

• If the split is true, always move to the left in the tree. This is denoted
by a “yes” response on the image of the tree.

• The splits should always be read from top to bottom, and the
observations in the buckets should be described by all of the splits
that happened before that bucket was reached. For example, the
bucket on the far right in Figure 4 contains observations for which
the lower court decision was conservative, and the respondent was
not a business, city, employee, government official, the United States,
or other.

• The prediction for each bucket is denoted by a 0 or 1 in a circle. This
is the majority outcome for each bucket.

Before we see how well our model does on the test set, let’s validate our
selection of the minbucket parameter. We first need to split the training set
into two pieces, one to build the model, and the other to test the accuracy
of the model. We can do this by just using the sample.split function
again:



28

> set.seed(100)

> spl = sample.split(StevensTrain$Reverse, SplitRatio = 0.5)

> StevensValidateTrain = subset(StevensTrain, spl == TRUE)

> StevensValidateTest = subset(StevensTrain, spl == FALSE)

Now, let’s build three models, each with a different value of minbucket.
We will test minbucket values of 5, 15, and 25. All of the models should
be built using the StevensValidateTrain data set:

> StevensTree1 = rpart(Reverse ∼ Circuit + Issue + Petitioner

+ Respondent + LowerCourt + Unconst, method="class", data =

StevensValidateTrain, minbucket=5)

> StevensTree2 = rpart(Reverse ∼ Circuit + Issue + Petitioner

+ Respondent + LowerCourt + Unconst, method="class", data =

StevensValidateTrain, minbucket=15)

> StevensTree3 = rpart(Reverse ∼ Circuit + Issue + Petitioner

+ Respondent + LowerCourt + Unconst, method="class", data =

StevensValidateTrain, minbucket=25)

Now, let’s use each of these models to make predictions on the second
piece of the validation set, StevensValidateTest. This can be done using
the predict function, just like we have done for the other methods. When
making predictions using a CART model, we need to include the type =

"class" argument to get predictions that are the majority outcome for
each bucket:

> StevensPredict1 = predict(StevensTree1, newdata =

StevensValidateTest, type="class")

> StevensPredict2 = predict(StevensTree2, newdata =

StevensValidateTest, type="class")

> StevensPredict3 = predict(StevensTree3, newdata =

StevensValidateTest, type="class")

Lastly, we want to compute the accuracy of each of the models by
building classification matrices:

> table(StevensValidateTest$Reverse, StevensPredict1)

StevensPredict1
0 1

0 52 38

1 47 61

> table(StevensValidateTest$Reverse, StevensPredict2)

StevensPredict2
0 1

0 38 52

1 28 80

> table(StevensValidateTest$Reverse, StevensPredict3)

StevensPredict3
0 1

0 64 26

1 45 63
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The first model correctly classifies 52+61, or 113 observations, out of
the 198 in the data set StevensValiateTest. The second model correctly
classifies 38+80, or 118 observations, and the third model correctly classifies
64+63, or 127 observations. Using these results, we will use a minbucket
parameter of 25 for our final model, since we are trying to maximize our
accuracy.

This demonstrates how a validation split of the training set can be
used to select the minbucket parameter value. To more throughly test the
parameter setting, you should try more parameter values, or use the method
of cross-validation. To learn more about cross-validation, see the references
at the end of Chapter 21 in The Analytics Edge.

Now let’s re-build our model using a minbucket value of 25 and the
entire training set, and then compute our accuracy on the test set:

> StevensTreeFinal = rpart(Reverse ∼ Circuit + Issue + Petitioner

+ Respondent + LowerCourt + Unconst, method="class", data =

StevensTrain, minbucket=25)

> StevensPredictTest = predict(StevensTreeFinal, newdata =

StevensTest, type="class")

> table(StevensTest$Reverse, StevensPredictTest)

StevensPredictTest
0 1

0 36 41

1 17 76

We end up correctly predicting 112 out of the 170 cases in our test set, for
an accuracy of 65.9%.

Random Forest

Now, let’s build a random forest model using the randomForest function.
To indicate that we have a classification problem with the rpart function,
we added the argument method="class". Unfortunately, the randomForest
function does not have this option. We instead need to make sure that our
outcome variable is stored as a factor before building our model:

> StevensTrain$Reverse = as.factor(StevensTrain$Reverse)

> StevensTest$Reverse = as.factor(StevensTest$Reverse)

If you try building the model before doing this, you should get an error
message asking if you do indeed want to do regression. This is a warning
that you probably want to convert your dependent variable to a factor with
the above method.

Now we are ready to build our random forest model:

> StevensForest = randomForest(Reverse ∼ Circuit + Issue +

Petitioner + Respondent + LowerCourt + Unconst, data = StevensTrain,

ntree=200, nodesize=15)
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The first two arguments are exactly like the ones used for the rpart

function: the formula, and the data set to used to build the model. The last
two arguments are the parameter settings. The number of trees to build is
set with the ntree parameter, and the minimum number of observations
that should be in each bucket is set with the nodesize parameter. (The
nodesize parameter corresponds to the minbucket parameter in a CART
model.)

As mentioned previously in this section, random forest models are
typically robust to the parameter settings, so we will not use a validation
set to pick the parameters here. However, you can use the exact same
method shown above for the minbucket parameter to validate the ntree

and nodesize parameters.

Let’s see how our random forest model does at predicting the
observations in the test set. We will first use the predict function, and
then build a classification matrix. Note that the predict function does not
need a type argument when it is used to get class predictions for a random
forest model.

> StevensPredictForest = predict(StevensForest, newdata =

StevensTest)

> table(StevensTest$Reverse, StevensPredictForest)

StevensPredictForest
0 1

0 39 38

1 15 78

Our random forest model correctly predicts 117 out of the 170
observations in our test set, for a slight improvement in accuracy over
the CART model. Keep in mind that random forests typically perform
better when there are many independent variables, so the improvement in
accuracy from a random forest model over a CART model could be bigger
or smaller than this.

In this section, we built a model to predict an outcome with two
classes. To build models with more than two classes, you can follow the
exact same steps as we did here. An example is given in the “Letter
Recognition” exercise of Chapter 22 in The Analytics Edge.

Continuous Outcomes

CART and random forest models can easily be extended to the case where
the outcome variable is continuous. We will demonstrate this using the
“Wine.csv” data from Section 2. Read this dataset into R, and call the
resulting data frame WineTrain. Then read in the data file “WineTest.csv”,
and call the resulting data frame WineTest.
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CART

To build a CART tree with a continuous outcome, we can just leave out
the method="class" argument:

> WineTree = rpart(Price ∼ WinterRain + AGST + HarvestRain + Age,

data = WineTrain, minbucket=3)

Note that we selected a much smaller minbucket parameter here than
in the Supreme Court model, because we have significantly less data (this
parameter selection should be selected through validation to make sure you
are building well-parameterized model).

If you plot the tree with prp(WineTree), you should see the tree given
in Figure 5. The difference between this tree and one with a categorical
outcome is the values at the leaves, or buckets of the tree. For a continuous
outcome, the values in each bucket give the average price for all training set
observations that fell into that bucket. So, for example, the average price
is 7.4 for all observations with an average growing season temperature less
than 17 degrees Celsius and harvest rain of less than 86 milliliters. This is
our prediction for all training set observations in this bucket, and will be
our prediction for all test set observations that fall into this bucket.

Figure 5: The CART model to predict the price of wine.

Let’s now make predictions on the test set. We can do this with the
predict function, just like we did before, but leaving out the type="class"
argument. Then to compute the accuracy on the test set, we want to
compute the R2, like we did for linear regression:
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> WinePredictTree = predict(WineTree, newdata = WineTest)

> SSE = sum((WineTest$Price - WinePredictTree)^2)

> SST = sum((WineTest$Price - mean(Wine$Price))^2)

> 1 - SSE/SST

[1] -3.022451

Our R2 is negative! This can happen sometimes when computing the
out-of-sample R2 for a model, and means that the model is doing
significantly worse than just predicting the average value for all observations.
We should be careful drawing any conclusions for this particular problem
though, since our test set only consists of two observations.

Random Forest

How about a random forest model? None of the arguments change for the
randomForest function with a continuous outcome. We just do not convert
our dependent variable to a factor before building the model. We can also
make predictions in the same way as before:

> WineForest = randomForest(Price ∼ WinterRain + AGST + HarvestRain

+ Age, data = WineTrain, ntree=200, nodesize=3)

> WinePredictForest = predict(WineForest, newdata = WineTest)

> SSE = sum((WineTest$Price - WinePredictForest)^2)

> SST = sum((WineTest$Price - mean(Wine$Price))^2)

> 1 - SSE/SST

[1] 0.4405377

While our R-squared here is not as good as the one we got with our
linear regression model, this is a significant improvement over the CART
model.

For more practice building tree models, see the exercises in Chapter
22 of The Analytics Edge.

5 Clustering in R

To show how Hierarchical Clustering and K-Means Clustering models can
be constructed in R, we will use the “WHO.csv” data file containing
information on countries that was used in Section 1.

First, navigate to the directory on your computer containing the file
WHO.csv, and use the read.csv function to read the datafile into R and
call it WHO. We will be using the numerical variables in this dataset that are
not missing values to cluster the countries: Population, Under15, Over60,
and LifeExpectancy. So the first thing we need to do is create a new data
frame with only these variables, which we will call WHOCluster:

> WHOCluster = WHO[c("Population", "Under15", "Over60",

"LifeExpectancy")]
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If you look at the structure of this new data frame, you should see that it
has the same 194 observations, but only the four variables that we listed
when creating it.

Normalization

Since we have variables in our data that are on vastly different scales
(Population is, on average, significantly larger than the other variables) we
want to normalize the variables. We will do this using the caret package,
which we will need to install and load (if you have already installed this
package, you do not need to run the first line below). Then we can create
a normalized dataset with the functions preProcess and predict:

> install.packages("caret")

> library(caret)

> preproc = preProcess(WHOCluster)

> WHOClusterNorm = predict(preproc, WHOCluster)

If you take a look at the summary of WHOClusterNorm, you should see that
all variables now have mean zero (and by using the sd function, you can
check that all variables have standard deviation 1).

Hierarchical Clustering

We are now ready to cluster our data. Let’s start with hierarchical
clustering, for which we need to compute all distances using the dist

function, and then run the hierarchical clustering algorithm using the
hclust function:

> distances = dist(WHOClusterNorm, method="euclidean")

> HierClustering = hclust(distances, method="ward")

Here we computed the point distances using the Euclidean distance metric,
and we performed the hierarchical clustering using Ward’s method, which
aims to find compact and spherical clusters. For more options of methods
you can use, see the help pages for the dist and hclust functions.

You can plot the dendrogram (shown in Figure 6) using the command
plot(HierClustering).

The dendrogram tells us that the countries very easily cluster into
two or three clusters. Five clusters also seems reasonable here if we are
looking for more clusters. For more about selecting the number of clusters
using a dendrogram, see Chapter 21 of The Analytics Edge.

Let’s proceed with three clusters. We can assign each data point to a
cluster using the cutree function, we can count the number of countries in
each cluster using the table function, and then we can take a look at the
centroids of the clusters using the tapply function:
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Figure 6: The dendrogram produced from running the

hierarchical clustering algorithm on the dataset WHO.csv.
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> clusterGroups = cutree(HierClustering, k = 3)

> table(clusterGroups)

clusterGroups

1 2 3

41 98 55

> tapply(WHOCluster$Population, clusterGroups, mean)

1 2 3

20380.80 49721.88 24463.24

> tapply(WHOCluster$Under15, clusterGroups, mean)

1 2 3

43.62488 29.27765 16.65927

> tapply(WHOCluster$Over60, clusterGroups, mean)

1 2 3

4.625854 8.176735 21.359455

> tapply(WHOCluster$LifeExpectancy, clusterGroups, mean)

1 2 3

55.65854 71.20408 78.58182

Note that here we are using the tapply function on the original dataset
WHOCluster, not the normalized dataset. We can do this because we never
changed the order of the observations (so the cluster assignments can be



Sec. 5 Clustering in R 35

matched with the observations in the original dataset), and it makes the
centroids more intuitive. However, you could instead look at the centroids
with the normalized dataset if you prefer.

Looking at the centroids, we can see that cluster 1 stands out as the
cluster containing the countries with a high percentage of the population
under 15, and a low life expectancy. Cluster 2 is distinguishable as the
countries with a large population, and cluster 3 contains the countries with
a high percentage of the population over 60 and a long life expectancy.

K-Means Clustering

Let’s now instead use the k-means clustering algorithm to cluster the
countries. Since the k-means algorithm is random in its assignment of points
to initial clusters, we want to start by setting the random seed so that we
can replicate our results (we arbitrarily selected the number 100 here – it
could be any number you want). We can then use the kmeans function to
perform the clustering, picking the number of clusters equal to three based
on the knowledge we got from running the hierarchical clustering algorithm:

> set.seed(100)

> KmeansClustering = kmeans(WHOClusterNorm, centers = 3)

Note that we did not need to compute the distances first with the k-means
algorithm. Now we can extract the cluster assignments and analyze the
centroids of the k-means clusters just like we did with the hierarchical
clusters. The kmeans function makes this a little easier for us though – the
cluster assignments are in the vector KmeansClustering$cluster:

> table(KmeansClustering$cluster)

1 2 3

57 54 83

We can see here that the k-means algorithm definitely found different
clusters, since there is a different number of countries in each cluster. But
they could still be very similar to the hierarchical clusters. To complete the
analysis, you should take a look at the centroids of the k-means clusters
too. The normalized centroids are already computed, and can be seen by
typing KmeansClustering$centers in your R console. Or, you can find
the centroids using the tapply function just like we did for the hierarchical
clusters.

You can also run different types of clustering in R, including a model
based approach with the mclust package, and spectral clustering with the
kernlab package. We refer you to the R page on cluster analysis for
more information about the packages and functions available for clustering:
http://www.cran.r-project.org/web/views/Cluster.html.

h
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6 Visualization

The ggplot2 package was created by Hadley Wickham, and was designed
to improve the basic plotting functionality in R and to make the process
of creating powerful and complex graphics much easier. Plotting using
the ggplot2 package is done by adding layers to a plot: a data layer,
an aesthetic layer, and a geometric layer. We will see several examples
throughout the rest of this section.

Scatterplots

First, let’s use the ggplot2 package to make some scatterplots with the
“WHO.csv” dataset that we used in Sections 1 and 5. For more information
about the data and the variables included, see Section 1.

The first thing we need to do is install and load the ggplot2 package:

> install.packages("ggplot2")

> library(ggplot2)

Now, let’s re-create the scatterplot that we made in Section 1, but this time
using ggplot. We can do this with the following command:

> ggplot(WHO, aes(x = GNI, y = FertilityRate)) + geom point()

The first part of this command defines the data frame and aesthetic
mapping that should be used to create the plot. Then, we add the layer
geom point, which will create points on the plot. The resulting plot is
shown in Figure 7.

If you compare this plot to the one created in Section 1, you should see
that we are creating the same plot, but with some nice visual improvements.
(You can re-create the original plot with the command plot(WHO$GNI,

WHO$FertilityRate) in R.) We can easily add some other features, like
specifying a color, size, and shape for the points, and adding a title and
new axis labels to the plot:

> ggplot(WHO, aes(x = GNI, y = FertilityRate)) +

geom point(color="blue", size = 3, shape = 17) + ggtitle("Fertility

Rate vs. Gross National Income") + xlab("Gross National Income") +

ylab("Fertility Rate")

If you create this plot in R, you should see that the points are now large
blue triangles. There are many different colors and shapes that you can
specify. To see all of the available colors, type colors() in your R console.
To see all of the available shapes, we direct you to: www.cookbook-r.com/
Graphs/Shapes_and_line_types/.

Let’s now make the coloring of the points more advanced, by coloring
the points by Region. We can do this by adding a color option to the
aesthetic:

www.cookbook-r.com/Graphs/Shapes_and_line_types/
www.cookbook-r.com/Graphs/Shapes_and_line_types/
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Figure 7: Scatterplot of gross national income versus fertility

rate in the WHO dataset, using ggplot2.
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> ggplot(WHO, aes(x = GNI, y = FertilityRate, color=Region)) +

geom point()

The resulting plot is shown in Figure 8. This plot easily allows us to see
something we might not have observed before; the points from different
regions are location in different areas of the plot. By changing the name of
the variable after the color argument of the previous command, you can
color the points by another attribute in the dataset.

Line Plots

In this section, we will use data from the City of Chicago about motor
vehicle theft incidents, sometimes called grand theft auto. The dataset we
will use is called “Crime.csv”, and can be found in the Online Companion
(do not open this file in any spreadsheet software before creating the plots
because it might change the format of the date variable). The dataset
just has three variables: the date and time the crime occurred (Date),
the latitude coordinate of the location of the crime (Latitude), and the
longitude coordinate of the location of the crime (Longitude).

We can use a line plot to communicate crime patterns over the course
of an average week. Before we can do this, we need to count the number
of crimes that occurred on each day of the week by using the following
commands:
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Figure 8: Scatterplot of gross national income versus fertility

rate in the WHO dataset, with each point colored by the region it

belongs to.
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> Crime$Date = strptime(Crime$Date, format = "%m/%d/%y %H:%M")

> Crime$Weekdays = weekdays(Crime$Date)

> WeekdayCounts = as.data.frame(table(Crime$Weekdays))

The first line converts the Date variable to a format that R can understand,
and the second line extracts the weekdays from Date and adds it as a new
variable called Weekdays in the data frame Crime. The third line creates a
new data frame called WeekdayCounts containing the counts of the number
of crimes that occurred on each weekday. If you take a look at the structure
of WeekdayCounts, you should see that there are two variables: Var1, which
gives the name of the weekday, and Freq which gives the number of crimes
in the dataset that occurred on the respective weekday.

Now, we are ready to create our plot using ggplot2:

> ggplot(WeekdayCounts, aes(x=Var1, y=Freq)) +

geom line(aes(group=1))

Here we use the geom line geometry to create a line plot. The aesthetic
option in geom line just indicates that we want to plot one line. If you
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create this plot, you should notice that the weekdays are in alphabetical
order instead of chronological order. We can change this by making Var1

an ordered factor variable, and generating our plot again:

> WeekdayCounts$Var1 = factor(WeekdayCounts$Var1, ordered = TRUE,

levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

"Saturday", "Sunday"))

> ggplot(WeekdayCounts, aes(x=Var1, y=Freq)) +

geom line(aes(group=1))

The first line changes Var1 to an ordered factor, where the levels argument
specifies the order for the values. The second line just generates the plot
again. The resulting plot is shown in Figure 9. If you want to change the
labels on the axes or add a title, you can do so using the same method we
used for the scatterplot.

Figure 9: Line plot of the number of motor vehicle thefts in the

city of Chicago by day of the week.

This line plot helps us observe that the number of motor vehicle thefts
in Chicago (on average) is higher on Friday, and lower on Sunday. If we
want to also observe how crime changes with the hour of the day, a heat
map is a useful visualization.
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Heat Maps

Let’s create a heat map for our crime data to visualize the amount of crime
in Chicago by hour and day of the week. We first need to add an Hour

variable to our data frame, and then create a new table, this time with the
crime counts for each day of the week and hour of the day:

> Crime$Hour = Crime$Date$hour

> WeekdayHourCounts = as.data.frame(table(Crime$Weekdays,

Crime$Hour))

The first line just creates a new variable in our Crime data frame called
Hour, which is luckily easy to extract because date objects in R have an
attribute called hour. The second line just creates a new data frame out of
the two dimensional table with Weekdays and Hour. If you take a look at
the structure of WeekdayHourCounts, you should see that the variables are
called Var1, which corresponds to the weekday, Var2, which corresponds to
the hour, and Freq, which corresponds to the crime counts.

The only problem we have left to fix before we can make our plot is to
change how Var1 and Var2 are stored. We want to make sure the weekdays
in Var1 are in an intuitive order by making it an ordered factor, and we
want to make sure the hours in Var2 are numeric:

> WeekdayHourCounts$Var1 = factor(WeekdayHourCounts$Var1,

ordered=TRUE, levels=c("Monday", "Tuesday", "Wednesday", "Thursday",

"Friday", "Saturday", "Sunday"))

> WeekdayHourCounts$Var2 =

as.numeric(as.character(WeekdayHourCounts$Var2))

The first line is exactly what we did when making our line plot. The second
line converts Var2 from a factor vector to a numeric vector. We have to
use as.character because of how R stores factors.

Now we are ready to make our heat map. To do so, we will use the
geom tile geometry. We will also go ahead and change the axis labels:

> ggplot(WeekdayHourCounts, aes(x = Var2, y = Var1)) +

geom tile(aes(fill = Freq)) + xlab("Hour of the Day") + ylab("")

Note that here we just removed the y-axis label by using empty quotes.
The resulting plot is shown in Figure 10. The legend on the right helps us
understand the plot. The lighter the color is, the more motor vehicle thefts
in that hour and day.

If you want to change the color scheme of the plot, you can do so by
adding a scale fill gradient layer:

> ggplot(WeekdayHourCounts, aes(x = Var2, y = Var1)) +

geom tile(aes(fill = Freq)) + xlab("Hour of the Day") + ylab(" ")

+ scale fill gradient(low="white", high="red")

This plot will have higher frequency values indicated by a more red color,
and lower frequency values indicated by a whiter color. Changing the color
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Figure 10: A heat map of the number of motor vehicle thefts in

the city of Chicago by day of the week and hour of the day.

scheme is often useful depending on the application. A red color scheme is
common in predictive policing, because it shows the “hotspots”, or times
and days with more crime, in red.

We can also create a heat map on a geographical map. Using the
motor vehicle theft data, let’s plot crime on a map of the city of Chicago.
To do this, we need to install and load two new packages: maps and ggmap.
Use the install.packages and library functions to install and load these
packages.

Now, let’s load a map of Chicago into R using the get map function:

> chicago = get map(location = "chicago", zoom = 11)

> ggmap(chicago)

In your graphics window, you should see a map of the city of Chicago. If we
were to plot all of the motor vehicle thefts in our dataset as points on this
map, we would obliterate the map of the city, since there are over 190,000
crime incidents. Instead, we will create a heat map of the amount of crime
in each area of the city, where the areas are defined by rounding the latitude
and longitude coordinates to two digits of accuracy.

We first need to create a new data frame that gives the crime counts by
latitude and longitude coordinates. We will again use the as.data.frame
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and table functions, together with the round function, which rounds a
number to the digits of accuracy given as the second argument to the
function:

> LatLongCounts = as.data.frame(table(round(Crime$Longitude, 2),

round(Crime$Latitude, 2)))

The data frame LatLongCounts gives us the total amount of crime in
each geographical area defined by the rounded Latitude and Longitude
coordinates. If you take a look at the structure of the data frame, you
should see that there are 1638 observations, and three variables: Var1 gives
the longitude coordinate, Var2 gives the latitude coordinate, and Freq gives
the number of motor vehicle thefts that occurred in that area.

Just like we did with our previous tables, we first need to make
sure that Var1 and Var2 are stored correctly. Currently, they are factor
variables, but we want them to be numeric variables. We can fix this with
the following commands:

> LatLongCounts$Var1 = as.numeric(as.character(LatLongCounts$Var1))

> LatLongCounts$Var2 = as.numeric(as.character(LatLongCounts$Var2))

Now, we are ready to create a heat map on the city of Chicago. We
can do this with the ggmap and geom tile functions:

> ggmap(chicago) + geom tile(data=LatLongCounts, aes(x = Var1, y =

Var2, alpha = Freq), fill="red")

The resulting plot is shown in Figure 11. This is very similar to “hot spot”
maps used in predictive policing. Note that the plot might take a few
minutes to load on your computer.

United States Maps

We will make an unemployment map of the United States, using unemployment
rates from 2005, 2009, and 2013, to see how the Great Recession impacted
various states. The data we will use is in the file “Unemployment.csv”
(available in the Online Companion). If you read this dataset into R, you
can see that it has four variables: the name of the state (State), the
unemployment rate in 2005 (Rate2005), the unemployment rate in 2009
(Rate2009), and the unemployment rate in 2013 (Rate2013).

A map of the United States is included in R. We can load the map
into a data frame called StatesMap using the map data function:

> StatesMap = map data("state")

If you take a look at the structure of StatesMap, you can see that it is a
data frame with 15,537 observations. The observations tell R how to draw
the map of the United States. To plot the map, we can use ggplot and the
polygon geometry:
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Figure 11: Heat map of the number of motor vehicle thefts in

the city of Chicago by geographic location.

> ggplot(StatesMap, aes(x = long, y = lat, group = group)) +

geom polygon(fill="white", color="black")

If you run this command in your R console, you should see a black
and white map of the United States. To add our unemployment data to this
map, we need to merge our Unemployment data frame with the StatesMap

data frame, using the merge function. This is a very useful function in R,
because it allows us to combine two data frames using a unique identifier.
In our case, this identifier is the name of the state, called State in the
Unemployment data frame, and region in the StatesMap data frame. The
following command will create a new data frame called UnemploymentMap,
which includes the unemployment data from the Unemployment data frame
as new variables for each observation in the StatesMap data frame:

> UnemploymentMap = merge(StatesMap, Unemployment, by.x = "region",

by.y = "State")

Now, let’s generate our map of the United States again, but this time
shading each state by the unemployment rate in 2009:
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> ggplot(UnemploymentMap, aes(x = long, y = lat, group = group,

fill=Rate2009)) + geom polygon(color="black")

The resulting map is shown in Figure 12. Note that the difference between
this command and the one to draw the blank map of the United States is
the data frame we gave to the ggplot function, and the fill argument.

Figure 12: Heat map on a map of the United States, showing

the unemployment rates in 2009.

To explore this dataset, it would be interesting to compare this map
to the corresponding maps in 2005 and 2013. You can just change the
variable being used to fill the states to generate these maps instead.

This section has just shown some basic plots you can generate using
the ggplot2 package. For more information, see http://ggplot2.org.

http://ggplot2.org
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